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A B S T R A C T   

Background: Alpine meadows, typical steppes, and deserts are among the globally important rangeland types that 
are generally distributed along temperature and precipitation gradients. Mineral losses caused by grazing are one 
of the key factors that can lead to instability or even degradation of these rangeland ecosystems. 
Methods: We examined the concentrations of Cu, Fe, Mn, and Zn in soil, forage, and livestock dungs from diverse 
rangeland types in northwest China, to determine the relationships between these trace elements (TEs) con
centrations and climatic factors (i.e., temperature, precipitation, and humidity), and to evaluate the potential 
risks of TEs deficiencies or excesses in these rangeland ecosystems. 
Results: Forage Zn concentrations in forage of all three types of rangeland, and Cu concentrations in forage of the 
alpine meadow did not meet the growth requirements of grazing livestock. Concentrations of Cu, Fe, and Mn in 
forage and Fe, Mn, and Zn in livestock dungs had quadratic parabola relationships with temperature, precipi
tation, and humidity, but the relationships between climate factors and Cu, Fe, and Mn concentrations in soil 
were not significant. In addition, the abilities of the plant to absorb Cu, Fe, and Zn from soil were stronger in the 
typical steppe than that in the alpine meadows and desert. Also, the abilities of livestock to return TEs to soil 
were stronger in the alpine meadow than that in the typical steppe and desert. 
Conclusion: We derived a conceptual mode that the ratio of TE concentrations of the plant to soil and of livestock 
dung to forage represents the abilities of plants to absorb TEs from the soil matrix and livestock to return TEs to 
soil or to absorb TEs from forage, respectively. Results indicate potentially more serious risks of TEs deficiencies, 
especially that of Zn than previously considered in typical steppes and desert rangelands.   
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1. Introduction 

Trace elements (TEs) are essential for the growth, maintenance, and 

reproduction of plants and grazing livestock, and for the stability of 
rangeland ecosystems (Trengove and Judson, 2010; Kumar et al., 2016). 
The TEs are persistent in environments, and their excessive accumula
tions can reduce the decomposition of soil organic matter, inhibit plant 
growth, and disrupt biogeochemical cycling (Kabata-Pendias, 2011; 
Shtangeeva et al., 2020). However, TE deficiencies remain important 
causes of livestock loss in many rangeland ecosystems. Rangelands ac
count for 41.7% of China’s land area, of which alpine meadow, typical 
steppe, and desert constitute 10.0%, 37.4%, and 17.3% of the total 
rangeland area, respectively (Hou et al., 2016). These three types of 
rangeland also support much of the global livestock industry (Hou et al., 
2021). Therefore, achieving a better understanding of TE apportionment 
in these rangeland types is vital to improve rangeland and livestock 
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health and thus sustain food security. 
Rangeland ecosystems are differentiated along temperature and 

precipitation gradients (Polley et al., 2013; Dixon et al., 2014; Chen 
et al., 2015). Spatial changes in plants, soil, and livestock associated 
with climate factors may impact the accumulation and bioavailability of 
TEs in ecosystems (Wang et al., 2014; Madejon et al., 2018). Previous 
researchers have contributed data on soil TE contents in rangelands to 
determine ambient background values but limited attention has been 
given to investigating TEs in forage and livestock. This data gap limits 
the ability to accurately predict excessive or insufficient levels of TEs in 
forage and to monitor nutritionally relevant TE changes in rangeland 
ecosystems. Although the soil is the main source of TEs for plants, their 
uptake and accumulation depend more on the plant and the climatic 
conditions than on TE concentrations in the soil (Nirupa and Prasad, 
2008; Nedjimi, 2018). Different taxonomic groups, and even botanically 
similar plant species, can absorb different amounts of TEs under the 
same soils (Norton et al., 2009; White et al., 2015; Mǐsljenović et al., 
2018; Guarino et al., 2019). These differences are amplified when the 
plants are grown in different soils (Zhang et al., 2011; Memoli et al., 
2017). Concentrations of TEs have a large spatial variability, both in the 
same plant species and between plant species, and the uptake of TEs 
from soils by plants varies significantly with changes in precipitation 
and temperature (Munoz and Faz, 2014; Zhang et al., 2014). 

Direct monitoring of TEs in plants is desirable to assess their levels in 
forage for grazing animals and to assess potential TEs losses through the 
export of marketed animals (Wang et al., 2014; Nedjimi, 2018). The 
plant-to-soil ratio of TEs represents the plants’ ability to absorb TEs from 
the soil matrix (Jiang et al., 2018). Thus, adapted plant community and 
TE uptake profiles can contribute to maintaining the productivity, sus
tainability, and resilience of rangeland ecosystems (Touceda-Gonzalez 
et al., 2017; Madejon et al., 2018). Grazing livestock plays a key role in 
the regulation of TE statuses in rangeland ecosystems through their 
cycling of minerals via forage ingestion and excretion patterns, and 
retention in the tissues. Trace element output from the ecosystem is 
mainly via the marketed livestock, while TEs are partly returned to the 
soil via livestock dung. The ratio of TE concentrations of livestock dung 
to forage implies the ability of livestock to return TEs to soil or to absorb 
from forage (Kumar et al., 2016). Along a climatic gradient, both ratios 
vary and have different influences on TE levels in rangeland ecosystems 
(Bosatta, 1998; Spohn and Sierra, 2018). 

Copper (Cu), iron (Fe), manganese (Mn), and zinc (Zn) are involved 
in many vital processes for organisms in rangeland ecosystems, 
including the transport of oxygen, protein synthesis, and enzyme ac
tivities (Trengove and Judson, 2010). To determine the changes of TE 
apportionment in plants, soil, and livestock along gradients of increasing 
air temperature and decreasing precipitation, three types of rangeland, i. 
e., alpine meadow, typical steppe, and desert in an inland region were 
chosen for the study. The objectives were to: (1) investigate the TE 
statuses of Cu, Fe, Mn, and Zn in these rangeland ecosystems, and (2) 
determine the relationships between TE concentrations in forage, soil, 
livestock dung, and climatic factors. The growth of plants and livestock 
in the arid and semi-arid rangelands of northern China is often 
co-limited by the availability of different mineral nutrients and water 
(Xu et al., 2012). According to biological characteristics, plants, soil, and 
livestock commonly share optimum or unfavorable environmental 
conditions for absorbing or accumulating TEs (Wang et al., 2014; Jiang 
et al., 2018). Therefore, the relationships of TE concentrations in 
herbage, soil, and sheep dung with environmental conditions including 
temperature, precipitation, and humidity could be explained with 
polynomial regression more accurately. The relatively low air temper
ature in alpine meadows (Fan et al., 2019; Hou et al., 2016) and rela
tively low precipitation in deserts (Niu et al., 2008) are the main factors 
restricting the function and production of plants and livestock. We, 
therefore, put forward two hypotheses: (1) the ability of plants to absorb 
TEs from soil is stronger in the typical steppe than in the alpine meadows 
and desert, and (2) the ability of livestock to return TEs from forage to 

soil is weaker in the typical steppe than in the alpine meadows and 
desert (Fig. 1). 

2. Materials and methods 

2.1. Site description 

The study was conducted on three types of rangeland in northwest 
China: the alpine meadow of the eastern Tibetan Plateau, the typical 
steppe of the western Loess Plateau, and the desert of the Northwestern 
Inland Arid Region (Fig. 2) (Hou et al., 2021). 

The alpine meadow site is located in Maqu County (35.97◦N, 
101.88◦N), Gansu Province. Mean elevation is ~3,500 m above sea 
level. The mean annual precipitation and temperature were 616 mm and 
2.5 ◦C in the past 10 years; mean temperature in 2012 and 2013 was 
2.7 ◦C, while annual precipitation across the experimental years was 
625.5 mm (Fig. 3). The soil is a clay loam and classified as a Mat-Cryic 
Cambisol (Sun et al., 2015). The mean soil pH (± standard error) was 
6.75 (±0.31), and soil organic carbon (SOC) and total nitrogen (TN) 
concentrations were 48.33 (±6.72) g kg− 1 and 2.26 (±0.40) g kg− 1, 
respectively. Yak (Bos grunniens) and Tibetan sheep (Ovis aries) were the 
main grazing livestock. 

The typical steppe site is located in Huan County (36.58◦N, 106.95◦

E), Gansu Province. Mean elevation is ~1,650 m above sea level. Mean 
annual temperature in 2012 and 2013 was 8.1 ◦C, and annual precipi
tation in 2012 and 2013 was 261 mm, of which 89.6% was recorded 
from May to September (Fig. 3), with 1,993 mm of annual potential 
evapotranspiration. The soil is sandy and classified as Loessial (Li et al., 
2021). Soil pH was 7.03 (±0.45), and the SOC and TN concentrations 
were 14.19 (±2.05) g kg− 1 and 1.28 (±0.28) g kg− 1, respectively. The 
Tan breed of sheep and Qinchuan cattle (Bos taurus) were the most 
common livestock managed with a continuous stocking regime. 

The desert site is located in Minqing County (38.88◦N, 103.82◦E), 
Gansu Province. The mean elevation is 1,440 m above sea level. Mean 
annual temperature in 2012 and 2013 was 10.2 ◦C (Fig. 3a). The mean 
annual precipitation in 2012 and 2013 was 107 mm, and rainfall from 
June to September accounted for 84.5% of the annual precipitation 
(Fig. 3b), with 2,623 mm of annual potential evapotranspiration. The 
desert soil is sandy and is classified as Aridisols, and the pH was 7.48 
(±0.63), while the SOC and TN concentrations were 3.09 (±0.66) g kg− 1 

and 0.254 (±0.082) g kg− 1, respectively. The Bactrian camel (Genus 
species) and Mongolia type of sheep were the predominant grazing 
livestock at this site. 

2.2. Sampling and analysis of forage, soil, and livestock dung 

To determine the TE concentrations in forage, soil, and livestock 
dung, three blocks (each of 5 hectares), treated as three replications, 
were set in each rangeland (distances between blocks in each rangeland 
were more than 10 km). On July 15–25 in both 2012 and 2013, 30 
quadrats in each block were randomly selected. In the alpine meadow 
and typical steppe, each quadrat was 1 × 1 m, and in the desert, 3 × 3 m. 
The edible plant species were determined and sampled. Forage in each 
block was mixed, washed, and oven-dried at 65 ◦C to constant weight for 
calculating biomass, and then ground through a 0.5-mm sieve for 
analyzing TE concentrations. At the time of forage sampling, 30 fresh 
livestock dung samples from different dung spots in each block were 
manually collected. Meanwhile, 30 soil samples at 0–30 cm depth were 
collected in each block using a wooden spade. All soil and dung samples 
were air-dried, then ground through a 0.25-mm nylon sieve. 

After acid digestion of forage, dung, and soil samples, total Cu, Fe, 
Mn, and Zn concentrations were measured by atomic absorption spec
trophotometry (Harlyk et al., 1997). Soil pH was measured using the 
potentiometric method in a soil/water suspension (1:2.5 ratio). Soil 
organic carbon was measured by chromic acid redox titration (Nelson 
and Sommers, 1996). Soil total nitrogen was measured following the 
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methods of Bremner and Mulvaney (1982). 

2.3. Calculations and statistical analysis 

The moisture index (K) was calculated according to (Ren et al., 
1965): 

K =
r

0.1
∑

θ  

where r is the annual precipitation, and 
∑

θ is > 0 ◦C is the accumulated 
temperature. 

All statistical analyses were conducted using SAS 9.4 (SAS Institute 
Inc., Cary, NC, USA). Results of a Shapiro–Wilk test (UNIVARIATE 
Procedure) indicated the data collected for the study were normally 
distributed. The ANOVA (GLM) indicated that the independent effects of 
year and the interaction effect of year and rangeland type on TE con
centrations in forage, soil, and livestock dungs were not significant, so 
the mean values of two years for TE concentrations in forage, soil, and 
livestock dung were applied to subsequent analyses and plots. A least 
significant difference (LSD) test was used to compare the mean differ
ences in TE concentrations among different sampled materials and the 
ratios of TE concentrations among rangeland types. The relationships 
between TE concentrations in forage, soil, and livestock dung and 
annual precipitation, mean annual temperature, and humidity, and the 
correlations of TE concentrations in forage and soil, forage and livestock 
dung, and soil and livestock dung were determined using polynomial 
regression (GLM Procedure). 

3. Results 

3.1. TE concentrations in forage, soil, and livestock dung 

Soil Zn concentration was significantly greater in the alpine meadow 
than in the typical steppe and desert, and forage Cu, Fe, and Zn con
centrations in the typical steppe were the greatest (Fig. 4). The Cu and 
Zn concentrations in soil were significantly greater than those in forage 
but significantly lower than those in livestock dung in the three types of 
rangeland, except that there was no significant difference in Zn con
centration between soil and dung in the desert (Fig. 4). The Fe and Mn 

concentrations in dung were significantly greater than those in forage 
but significantly lower than those in soil in the three types of rangeland. 

3.2. Relationships between TE concentrations and climate factors 

Zn concentration in soil had an upward-curving relationship with 
temperature, precipitation, and humidity (Fig. 5a). There was no sig
nificant relationship between Cu, Fe, and Mn concentrations in soil and 
climate factors. 

The relationships between air temperature and Cu, Fe, and Zn con
centrations in forage, and between precipitation and Cu and Fe con
centrations in forage presented downward curves (Fig. 5b). However, 
Mn concentration in forage had an upward-curving relationship with 
temperature, precipitation, and humidity. 

In livestock dung, annual precipitation, annual mean temperature, 
and humidity had downward-curving relationships with Zn concentra
tion and an upward-curving relationship with Mn concentration. Iron 
concentration in livestock dung presented a downward curve with 
temperature and an upward curve with precipitation and humidity. 

3.3. Trace element cycles in three types of rangeland 

There was no significant correlation between the concentrations of 
Cu, Fe, Mn and Zn in soil and forage, in forage and livestock, and in soil 
and livestock, except that Fe in forage and dung and Zn in soil and dung 
(Table 1). 

The ratio of forage to soil for Cu concentration was significantly 
greater in the typical steppe than in the alpine meadow (Fig. 6a). The 
ratios of forage to soil for Fe, Mn, and Zn concentrations were signifi
cantly greater in the typical steppe and desert than in the alpine 
meadow. The ratios of dung to forage for Cu, Fe, Mn, and Zn in the alpine 
meadow were significantly greater than those in the typical steppe and 
desert (Fig. 6b). Additionally, the ratios of dung to forage for Cu and Zn 
in the typical steppe were significantly lower than those in the desert, 
but the ratio for Mn was significantly greater in the typical steppe than in 
the desert. 

Fig. 1. The conceptual diagram of TE cycles among soil, forage, and livestock in rangeland ecosystems along climatic gradients. The width of arrows indicates the 
ability of TE absorptions of plants from soil and TE returns of livestock to soil in the hypotheses, where precipitation, air temperature, and elevation are illustrated as 
a gradient from dark color to light color (those are, high to low). 
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4. Discussion 

4.1. Trace element statuses 

The possible reasons for TE excesses or deficiencies across different 
rangeland types vary with climate and soil (Fan et al., 2019). For grazing 
livestock, it is primarily forage-based: if the soil cannot supply sufficient 
TEs to plants consumed by grazing livestock, TE deficiencies occur. Soil 
TE concentrations may indicate gross TE deficiency or excess, this may 
be used only as a guide when considering the TE statuses of plants and 
livestock. According to Zhang et al. (2010), the average TE values of soil 
in China were reported as follows: Cu (22.6 ± 11.4 mg kg− 1), Fe (2.94 ±
0.95%), Mn (583 ± 363 mg kg− 1), and Zn (74 ± 33 mg kg− 1).Results 
from the present study showed that soil Fe and Mn concentrations in the 
three rangelands and Zn concentrations in the typical steppe and desert 
were far lower than the average values in China, while the other con
centrations were not different from the average values. This suggested 
that these soils were not yet contaminated by rapid industrial 
development. 

Forage has wide variations in TE concentrations due to soil condi
tion, vegetation type, and geographical distribution (Vondráčková et al., 
2014; Khan et al., 2017). According to the recommendations of the NRC 
(2007) and ARC (1980), the present study observed that the forage Fe 
and Mn concentrations in the three types of rangeland were within the 

recommended levels for ruminant livestock, but forage Cu concentration 
in the alpine meadow and Zn concentration in all rangelands were lower 
than the recommended levels of livestock. 

Neutral-pH- soil conditions are beneficial to the absorption of Fe by 
plants (Kumaresan et al., 2010), which may be responsible for greater 
forage Cu, Fe, and Zn concentrations in the typical steppe without the 
highest soil Cu, Fe Zn concentration (Fig. 4). Although the TE concen
trations in the alpine meadow soil were not low, but they were the 
lowest in forage among all the rangelands. Previous studies have indi
cated that the availability of TEs to plants may depend on plant species 
rather than the element concentrations in the soil, and the TE dilution 
effect can be more obvious in high-biomass forage (Nedjimi, 2018). The 
greater biomass in the alpine meadow (Figure S1) may have resulted in 
low TE concentrations in forage. 

TE statuses of livestock are diagnosed indirectly by dung. Cu and Zn 
are the most important essential minerals for the growth and develop
ment of livestock (Yildiz and Balikci, 2004). Greater TE concentrations 
in dung imply lower TE absorption by livestock (Deng et al., 2014). In 
the present study, a low Mn and Zn concentration in forage but high Mn 
and Zn concentration in dung in the alpine meadow compared with 
other rangeland types indicated that Mn and Zn absorption of livestock 
may be lower in the alpine meadow than in typical steppe and desert, or 
that the climate in the alpine meadow limits Mn and Zn absorption by 
livestock. 

Fig. 2. Location of the sample sites.  
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Fig. 3. (a) Monthly precipitation and (b) monthly mean temperature in 2012 and 2013 at the three types of rangeland.  

Fig. 4. The Cu, Fe, Mn, and Zn in forage (F), soil (S), and livestock dung (D) at the three types of rangeland. Means with the same lower-case letters between different 
samples or with the same uppercase letters between different rangeland types are not significantly different (P > 0.05). 
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4.2. Relationships between trace elements and climate factors 

Air temperature and precipitation are the most important climatic 
factors in controlling the survival of plants and their distribution (Le 
Houérou, 2001; Slimani et al., 2010), and as a result, they cause a large 
spatial variability in extractable mineral elements (Munoz and Faz, 
2014; Zhang et al., 2014). Too low or too high temperatures inhibit plant 
growth and the activity of soil microorganisms, which in turn can 
constrain the accumulation of organic matter and uptake of minerals. 
Studies have shown that organic matter has significant implications for 
TE speciation, transport, and bioavailability (Dong et al., 2017; 

Blankson et al., 2017), and the increase of organic matter in soil can 
increase TE concentrations in plants. Khan et al. (2006) reported low 
availability of TEs at a high temperature in a semiarid region. These 
findings contribute to the explanation of the downward curve of the 
associations between temperature and Cu, Fe, and Zn contents in fodder 
in the current study (Fig. 5b). Mineral solution rates in soil increase then 
decrease with increasing water input (Weis and Weis, 2004). In addition, 
increased plant growth can dilute TE concentrations in plants. Previous 
studies have shown a decreasing trend of plant TEs under conditions of 
increasing soil water (Wang et al., 2014; Cai et al., 2017a). Our results 
showing a downward-curving relationship between Cu and Fe 

Fig. 5. The relationships between TE concentrations in (a) soil, (b) forage, and (c) livestock dung and annual mean temperature, annual precipitation, and humidity 
K value. 
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concentrations in forage and precipitation agreed with the above 
conclusion (Fig. 5b). Drought may inhibit general plant function, 
including uptake of soil minerals, and thus severely restrict plant growth 
(Lipiec et al., 2013; Dixon et al., 2014). Therefore, it is reasonable to 
suggest that the Fe concentration in forage may present an upward trend 
as precipitation changes from low to moderate. The interactions of TEs 
during forage uptake could be a reason for the decoupling of TE stoi
chiometry between plant and soil—for example, the antagonistic in
teractions of Mn with Fe, Cu, and Zn (Kabata-Pendias and Mukherjee, 
2007; Cai et al., 2017b). The accumulation of Mn in plants can cause Fe 
deficiency, since Mn competes with Fe for binding sites during trans
portation (Eroglu et al., 2016; Tian et al., 2016). Indeed, the relation
ships between forage Mn and temperature and precipitation, as opposed 

to that between forage Cu, Fe, and Zn and temperature and precipita
tion, found in the present study (Fig. 5b) suggested antagonism between 
Mn and Cu, Fe, and Zn in plants. 

The TEs in rangeland ecosystems will eventually be reflected in 
grazing livestock: TE concentrations in forage have a crucial influence 
on the content and balance of TEs in livestock (Wang et al., 2014). The 
digestion and absorption of TEs by grazing livestock are also affected by 
livestock species and climate factors (Fan et al., 2019). Therefore, the 
relationships between TE concentrations in livestock dung and tem
perature, precipitation, and humidity K value are similar but not iden
tical to the relationships between TE concentrations in forage and these 
same climate factors. 

Previous studies have shown that the characteristics of TE content in 

Fig. 5. (continued). 
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soil have regional differences. Variable geology is one of the main causes 
of the difference in TE levels across rangelands around the globe 
(Kabata-Pendias, 2011; Khan et al., 2017). Existing studies on the 
changes of soil TEs with temperature and precipitation were generally 
carried out in a single region (Cai et al., 2017b; Nedjimi, 2018), air 
temperature and precipitation have limited effects on TE concentrations 
of regional soils. The findings of the current study (Fig. 5a) could be 
explained by variations in soil chemistry and parent material between 
various rangelands or the limited range of climatic zones. Therefore, we 
recommend that future research on TE allocation in rangelands should 
focus more on seasonal fluctuations. 

Fig. 5. (continued). 

Table 1 
Soil–forage–dung relationships (Pearson correlations) in relation to TE status.  

Trace element Cu Fe Mn Zn 

Soil-forage     
Pearson correlation value − 0.184 − 0.081 − 0.415 − 0.390 
P-value 0.635 0.836 0.267 0.299 
Forage-dung     
Pearson correlation value 0.548 0.856a − 0.238 − 0.238 
P-value 0.127 0.003 0.791 0.537 
Soil-dung     
Pearson correlation value − 0.273 0.164 0.262 0.808a 

P-value 0.477 0.164 0.262 0.008  

a Indicate the correlations were significant (P < 0.01). 
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4.3. Evaluations of trace elements in the three types of rangeland 

Previous studies have shown significant correlations between soil 
and forage and between forage and sheep for some TEs (Grzegorczyk 
et al., 2014; Oliveira et al., 2015; Desjardins et al., 2018; Fan et al., 
2019). However, in the present study, except for the correlations be
tween Fe in forage and livestock dung and Zn in soil and livestock dung, 
the correlations between other TEs in soil and forage, forage and dung, 
and soil and dung were not significant (Table 1). These results could be 
attributed to variations in TE complex utilization efficiency depending 

on the needs of plants and livestock in various rangelands (Dong et al., 
2009; Nedjimi, 2018). Our findings agree with those of Wang et al. 
(2014) and Khalili et al. (1993), who reported no correlations of TEs 
between soil, forage, and sheep serum. Although most of the correlations 
in TEs between both forage, soil, and livestock dung were not signifi
cant, their ratios have great ecological significance (Han et al., 2011). 
The TE ratios of forage to soil and livestock dung to forage can be used, 
respectively, as ability indicators of TE absorption of plants from soil and 
of TE returns of livestock in rangeland ecosystems (Galinha et al., 2010; 
Deng et al., 2014). These indicators can be used to assess the stability of 

Fig. 6. The ratios of Cu, Fe, Mn, and Zn concentrations of (a) forage to soil and (b) livestock dung to forage in the three types of rangeland. Means with the same 
lower-case letters are not significantly different between rangeland types (P > 0.05). 
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rangelands and forecast TE changes in these rangelands. 
Consistent with our first hypothesis, the abilities of plants to absorb 

Cu, Fe, and Zn from soil were stronger in the typical steppe than in the 
alpine meadows and desert (Fig. 6a). Many studies have reported the 
antagonistic interactions of Mn with Fe, Cu, and Zn in the plants 
(Kabata-Pendias and Mukherjee, 2007; Cai et al., 2017b), which 
explained why the ability of Mn absorption of plants in the typical steppe 
was not the strongest. Our results agreed with the assertion that low 
precipitation and high temperature in the desert restricted plants to 
absorb some mineral elements (Niu et al., 2008). The low air tempera
ture in alpine meadows may limit the absorption of mineral elements by 
plant (Fan et al., 2019). In addition, the dilution effect of biomass in 
alpine meadows may be the main factor directly resulting in low TEs 
concentration in plants and indirectly limiting the ability of plants to 
absorb TEs from the soil (Nirupa and Prasad, 2008; Xu et al., 2012; 
Nedjimi, 2018). 

Consistent with our second hypothesis, the ability of livestock to 
return Cu and Zn from forage to soil is weaker in the typical steppe than 
in the alpine meadows and desert (Fig. 6b). A higher return ability of TEs 
for livestock in alpine meadow may be owing to (1) low temperature in 
alpine meadows may restrict TE absorptions of livestock (Niu et al., 
2008; Fan et al., 2019; Hou et al., 2016), and (2) lower TE concentra
tions of forages in the alpine meadow. The accumulations of TEs in 
ecosystems may impact the activities of soil organisms (microorganisms, 
microfauna, macrofauna), alter food web functioning, reduce the 
organic matter decomposition rate, and disrupt biogeochemical cycling 
(Kabata-Pendias, 2011; Shtangeeva et al., 2020). Results of the current 
study showed that all three rangeland ecosystems were not overly 
contaminated by TEs; instead, the concentrations of TEs in soils or plants 
were lower than recommended levels, suggesting that the these range
lands are at risk of TE losses. TE deficiencies may impair the growth and 
reproduction of livestock and even lead to their death, which results in 
enormous economic loss to the herders (Xin et al., 2011; Wang et al., 
2014; Fan et al., 2019). Except for atmospheric deposition, grazing 
livestock dung is the main TE input path in natural rangeland. Therefore, 
the lower ability of TE returns of livestock in the typical steppe and 
desert indicated that typical steppes and deserts were at greater risk of 
TE losses than the alpine meadows, suggests raising awareness among 
herders to address Cu and Zn deficiencies in the typical steppes and 
deserts.. 

5. Conclusions 

Spatial variations of TEs in soil, plant, and livestock associated with 
ecological and environmental factors can affect the cycling of TEs in 
ecosystems. Therefore, we investigated Cu, Fe, Mn, and Zn concentra
tions in forage, soil, and livestock dung in three different types of ran
geland along a climatic gradient. Grazing livestock in the three types of 
rangeland should be provided with Zn supplements, and grazing live
stock in alpine meadows should be supplemented with an appropriate 
amount of Cu for improving the production of grazing livestock. Cli
matic factors have greater relationships with TE concentrations in forage 
than in soil and livestock dungs, and temperature rather than precipi
tation and humidity may better explain the changes in TE concentrations 
in forage. The bioavailability of TEs to livestock nutrition, especially for 
Fe and Mn, mainly depends on plants rather than their concentrations in 
soils. Furthermore, we predict that continuous grazing may cause typical 
steppes and deserts to be at greater risk of TEs losses than alpine 
meadows. 
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